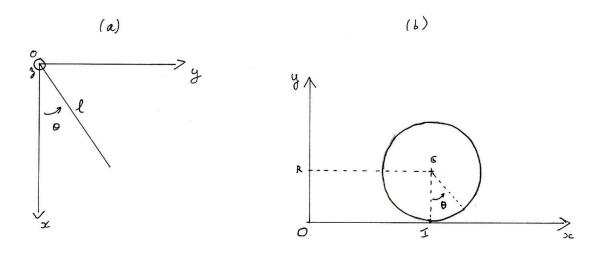
Contrôle Continu Session 1 - Durée : 1h

Les documents, téléphones portables et calculatrices sont interdits. Ce partiel comporte deux exercices indépendants. Les caractères gras désignent des vecteurs.



A.Le pendule

On considère une tige de masse m et de longueur ℓ . On néglige les dimensions transversales de la tige. On note λ la masse linéïque uniforme de la tige. La tige est articulée autour d'un point O fixe. Elle oscille dans un plan vertical autour de l'axe Oz (voir figure a). On note θ l'angle que fait la tige par rapport à l'axe Ox.

- 1 Exprimer la masse m de la tige en fonction de la masse linéïque λ et de sa longueur ℓ .
- **2** Calculer le moment d'inertie I_{Oz} de la tige par rapport à l'axe Oz.
- $\mathbf{3}$ Exprimer le vecteur rotation $\mathbf{\Omega}$ de la tige par rapport au référentiel fixe muni du repère (Oxyz) en fonction de la vitesse angulaire $\dot{\theta}$ et du vecteur unitaire \mathbf{e}_z de l'axe Oz.
- 4 Calculer par intégration directe le moment cinétique L en fonction de λ , $\dot{\theta}$ et ℓ , puis en fonction de m, ℓ et $\dot{\theta}$. Retrouver l'expression de I_{Oz} .
- 5 Déterminer les coordonnées du centre de masse G dans (Oxyz).
- 6 En déduire les coordonnées du vecteur vitesse dans (Oxyz).
- 7 Calculer l'expression du moment d'inertie I_{Δ} de la tige par rapport à l'axe passant par G et parallèle à Oz en utilisant l'expression générale du moment d'inertie.
- 8 Retrouver ce résultat grâce au théorème de Huygens.
- $\mathbf{9}$ Calculer grâce au théorème de Kœnig l'expression du moment cinétique par rapport à G.
- 10 En déduire l'expression de I_{Δ} .

B. Vitesse de glissement d'un disque

On considère un disque homogène de centre G, de masse m et de rayon R qui roule sans glisser sur la droite (Ox) (voir figure b). On repère l'angle d'un point du disque par θ . La coordonnée selon (Ox) de la vitesse du centre de masse G est notée $\mathbf{v}_G = \dot{x}\mathbf{e}_x$.

- 11 On note σ la densité surfacique de masse du disque. Montrer que le moment d'inertie I_G du disque par rapport à G vaut $I_G = \pi \sigma R^4$. En déduire son expression en fonction de m et R.
- 12 Exprimer le vecteur rotation Ω du disque par rapport au référentiel fixe muni du repère (Oxyz) en fonction de la vitesse angulaire $\dot{\theta}$ et du vecteur unitaire \mathbf{e}_z de l'axe Oz.
- 13 On note I le point de contact : soient I_1 le point du disque et I_2 celui de la droite (Ox). Que dire de la vitesse de I_2 ?
- 14 En déduire la condition de vitesse sans glissement sur la vitesse de I_1 .
- 15 En rappelant l'expression fondamentale qui relie la vitesse entre deux points d'un solide, exprimer la condition de roulement sans glissement en fonction de \dot{x} , R et $\dot{\theta}$.
- 16 Interpréter le signe dans cette expression.